Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int. microbiol ; 27(2): 525-534, Abr. 2024. mapas
Artículo en Inglés | IBECS | ID: ibc-232298

RESUMEN

Although coffee leaf rust (CLR), caused by Hemileia vastatrix, poses an increasing threat to coffee production in Ethiopia, little is known regarding its genetic diversity and structure and how these are affected by coffee management. Here, we used genetic fingerprinting based on sequence-related amplified polymorphism (SRAP) markers to genotype H. vastatrix samples from different coffee shrubs, across 40 sites, covering four coffee production systems (forest coffee, semi plantation coffee, home garden coffee, and plantation coffee) and different altitudes in Ethiopia. In total, 96 H. vastatrix samples were successfully genotyped with three primer combinations, producing a total of 79 scorable bands. We found 35.44% of amplified bands to be polymorphic, and the polymorphic information content (PIC) was 0.45, suggesting high genetic diversity among our CLR isolates. We also found significant isolation-by-distance across the samples investigated and detected significant differences in fungal genetic composition among plantation coffee and home garden coffee and a marginally significant difference among plantation coffee and forest coffee. Furthermore, we found a significant effect of altitude on CLR genetic composition in the forest coffee and plantation systems. Our results suggest that both spore dispersal and different selection pressures in the different coffee management systems are likely responsible for the observed high genetic diversity and genetic structure of CLR isolates in Ethiopia. When selecting Ethiopian coffee genotypes for crop improvement, it is important that these genotypes carry some resistance against CLR. Because our study shows large variation in genetic composition across relatively short geographical distances, a broad selection of rust isolates must be used for coffee resistance screening.(AU)


Asunto(s)
Humanos , Basidiomycota/genética , Café/genética , Café/microbiología , Enfermedades de las Plantas/microbiología , Etiopía
2.
Int Microbiol ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507629

RESUMEN

Although coffee leaf rust (CLR), caused by Hemileia vastatrix, poses an increasing threat to coffee production in Ethiopia, little is known regarding its genetic diversity and structure and how these are affected by coffee management. Here, we used genetic fingerprinting based on sequence-related amplified polymorphism (SRAP) markers to genotype H. vastatrix samples from different coffee shrubs, across 40 sites, covering four coffee production systems (forest coffee, semi plantation coffee, home garden coffee, and plantation coffee) and different altitudes in Ethiopia. In total, 96 H. vastatrix samples were successfully genotyped with three primer combinations, producing a total of 79 scorable bands. We found 35.44% of amplified bands to be polymorphic, and the polymorphic information content (PIC) was 0.45, suggesting high genetic diversity among our CLR isolates. We also found significant isolation-by-distance across the samples investigated and detected significant differences in fungal genetic composition among plantation coffee and home garden coffee and a marginally significant difference among plantation coffee and forest coffee. Furthermore, we found a significant effect of altitude on CLR genetic composition in the forest coffee and plantation systems. Our results suggest that both spore dispersal and different selection pressures in the different coffee management systems are likely responsible for the observed high genetic diversity and genetic structure of CLR isolates in Ethiopia. When selecting Ethiopian coffee genotypes for crop improvement, it is important that these genotypes carry some resistance against CLR. Because our study shows large variation in genetic composition across relatively short geographical distances, a broad selection of rust isolates must be used for coffee resistance screening.

3.
Anim Microbiome ; 3(1): 73, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654483

RESUMEN

BACKGROUND: The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture. RESULTS: Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids. CONCLUSION: We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.

4.
PLoS One ; 16(4): e0250203, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33886638

RESUMEN

Currently, one of the most important challenges is to provide sufficient and affordable food and energy for a fast-growing world population, alongside preserving natural habitats and maintaining biodiversity. About 35% of the global food production depends on animals for pollination. In recent years, an alarming worldwide decline in pollinators has been reported, putting our food production under additional pressure. Therefore, there is an urgent need to find sustainable ways to ensure this crucial ecosystem service. Recent studies have shown that floral nectar is generally colonized by microorganisms, specifically yeasts and bacteria, which may alter nectar chemistry and enhance attraction of pollinators. In this study, we investigated changes in pollinator foraging behavior and pollination success in European pear (Pyrus communis L.) cultivars 'Regal Red' and 'Sweet Sensation' (red sports of 'Doyenné de Comice') after flower inoculation with the typical nectar-inhabiting microorganisms Metschnikowia reukaufii and Acinetobacter nectaris, and a combination of both. Pollination success was monitored by measuring the number of flower visits, fruit set and seed set in two consecutive years, 2019 and 2020. Results revealed that application of a mixture of M. reukaufii and A. nectaris resulted in significantly higher visitation rates of honeybees and hoverflies. By contrast, no effects on flower visits were found when yeasts and bacteria were applied separately. Fruit set and seed set were not significantly affected by any of the inoculation treatments. The only factors affecting fruit set were initial number of flower clusters on the trees and the year. The absence of treatment effects can most likely be attributed to the fact that pollination was not a limiting factor for fruit set in our experiments. Altogether, our results show that inoculation of flowers with nectar microbes can modify pollinator foraging patterns, but did not lead to increased pollination success under the conditions tested.


Asunto(s)
Flores/microbiología , Néctar de las Plantas , Polinización , Pyrus/microbiología , Animales , Abejas , Frutas
5.
Int J Food Microbiol ; 339: 109030, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33387813

RESUMEN

Currently, there is a strong interest in barrel ageing of finished, conventionally fermented beers, as a novel way to produce sour beers with a rich and complex flavour profile. The production process, however, remains largely a process of trial and error, often resulting in profit losses and inconsistency in quality. To improve product quality and consistency, a better understanding of the interactions between microorganisms, wood and maturing beer is needed. The aim of this study was to describe the temporal dynamics in microbial community composition, beer chemistry and sensory characteristics during barrel ageing of three conventionally fermented beers that differed in parameters like alcohol content and bitterness. Beers were matured for 38 weeks in new (two types of wood) and used (one type of wood) oak barrels. Beer samples were taken at the start of the maturation and after 2, 12 and 38 weeks. Microbial community composition, determined using amplicon sequencing of the V4 region of the bacterial 16S rRNA gene and the fungal ITS1 region, beer chemistry and sensory characteristics substantially changed throughout the maturation process. Likewise, total bacterial and fungal population densities generally increased during maturation. PerMANOVA revealed significant differences in the bacterial and fungal community composition of the three beers and across time points, but not between the different wood types. By contrast, significant differences in beer chemistry were found across the different beers, wood types and sampling points. Results also indicated that the outcome of the maturation process likely depends on the initial beer properties. Specifically, results suggested that beer bitterness may restrain the bacterial community composition, thereby having an impact on beer souring. While the bacterial community composition of moderately-hopped beers shifted to a dominance of lactic acid bacteria, the bacterial community of the high-bitterness beer remained fairly constant, with low population densities. Bacterial community composition of the moderate-bitterness beers also resembled those of traditional sours like lambic beers, hosting typical lambic brewing species like Pediococcus damnosus, Lactobacillus brevis and Acetobacter sp. Furthermore, results suggested that alcohol level may have affected the fungal community composition and extraction of wood compounds. More specifically, the concentration of wood compounds like cis-3-methyl-4-octanolide, trans-3-methyl-4-octanolide, eugenol and total polyphenols was higher in beers with a high alcohol content. Altogether, our results provide novel insights into the barrel ageing process of beer, and may pave the way for a new generation of sour beers.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Cerveza/microbiología , Microbiología de Alimentos , Microbiota , Biodiversidad , Fermentación , Aromatizantes , Pediococcus , Polifenoles/análisis , ARN Ribosómico 16S/genética , Gusto , Factores de Tiempo
6.
Microbiologyopen ; 8(12): e918, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31441243

RESUMEN

Production of many agricultural crops and fruits strongly depends on pollinators. For instance, pome fruits such as apple and pear are highly dependent on pollination for fruit set, fruit quality, and yield. Nectar is often inhabited by microbes, most often yeasts and bacteria, which may change nectar quality and therefore also affect plant-pollinator interactions. Here, we used high-throughput 16S ribosomal RNA gene amplicon sequencing to investigate the temporal and spatial variation in bacterial communities in floral nectar of apple and pear. We sampled 15 apple (Malus x domestica Borkh.) and 15 pear (Pyrus communis L.) orchards distributed over the eastern part of Belgium over a timespan of seven days. Nectar bacterial community composition differed strongly among fruit species. Nectar of pear was dominated by Actinobacteria, followed by Proteobacteria and Firmicutes. Apple nectar was strongly enriched in Bacteroidetes, a phylum which until now has been found to be rarely associated with floral nectar. Nectar was dominated by only a few bacterial species, with Brevibacterium (Actinobacteria) and Undibacterium (Proteobacteria) as the most abundant bacteria in pear and apple nectar, respectively. Bacterial richness and diversity were found to fluctuate during flowering, likely due to changing environmental conditions. Additionally, spatial structure in nectar bacterial community composition was found in apple orchards, while this was not the case for pear. Differences in nectar bacterial communities between apple and pear nectar may differently affect the chemical and nutritional composition of the nectar, influencing pollinator attraction and visitation, and thus pollination efficacy in general.


Asunto(s)
Bacterias , Malus/microbiología , Microbiota , Néctar de las Plantas , Pyrus/microbiología , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Código de Barras del ADN Taxonómico , Frutas/microbiología
7.
Food Microbiol ; 77: 106-117, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30297041

RESUMEN

This research aimed at establishing the chemical intrinsic properties and the microbial quality of an edible grasshopper Ruspolia differens and the effect of its source (geographical area) in Uganda, trading point, swarming season and plucking on these parameters. The intrinsic properties of the grasshopper can support the growth of a wide variety of microorganisms. High counts of total aerobic microbes, Enterobacteriaceae, lactic acid bacteria, total aerobic spores, and yeasts and moulds were obtained. Metagenetic analyses yielded 1793 Operational Taxonomic Units (OTUs) belonging to 24 phyla. Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were the most abundant phyla, while members of the genera Acinetobacter, Buttiauxella, Lactococcus, Staphylococcus and Undibacterium were the most abundant OTUs. A number of genera harbouring potential pathogens (Acinetobacter, Bacillus, Buttiauxella, Campylobacter, Clostridium, Staphylococcus, Pseudomonas and Neisseria) were identified. The geographical area, trading point, swarming season and plucking significantly influenced microbial counts and bacterial diversity. The high microbial counts predispose R. differens to fast microbial spoilage, while the presence of Clostridium and Campylobacter makes this grasshopper a potential source of food borne diseases. Further research should identify the specific spoilage microorganisms of R. differens and assess the characteristics of this grasshopper that support growth of food pathogens.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Saltamontes/microbiología , Microbiota , Animales , Bacterias/genética , Carga Bacteriana , Biodiversidad , ADN Bacteriano/análisis , Inocuidad de los Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Concentración de Iones de Hidrógeno , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año , Uganda , Levaduras
8.
Insects ; 9(4)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544592

RESUMEN

Many reptiles, amphibians, mammals, and insects practice some form of hibernation during which their metabolic rate is drastically reduced. This allows them to conserve energy and survive the harsh winter conditions with little or no food. While it can be expected that a reduction in host metabolism has a substantial influence on the gut microbial community, little is known about the effects of hibernation on the composition of the microbial gut community, especially for insects. In this study, we assessed and compared the bacterial gut community composition within the midgut and ileum of indoor-reared queens of Bombus terrestris before and after an artificial hibernation period of 16 weeks. Deep sequencing of 16S ribosomal RNA gene amplicons and clustering of sequence reads into operational taxonomic units (OTUs) at a similarity threshold of 97% revealed several bacterial taxa that are known to be strongly associated with corbiculate bees. Bacterial community composition after hibernation compared to before hibernation was characterized by higher OTU richness and evenness, with decreased levels of the core bacteria Gilliamella (Proteobacteria, Orbaceae) and Snodgrassella (Proteobacteria, Neisseriaceae), and increased relative abundance of non-core bacteria, including several psychrophilic and psychrotrophic taxa.

9.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29625988

RESUMEN

In this study, the microbiota during industrial rearing, processing, and storage of the edible tropical house cricket, Gryllodessigillatus, was investigated. To this end, we analyzed samples from the cricket feed, obtained before feeding as well as from the cages, and from the crickets during rearing, after harvest, and after processing into frozen, oven-dried, and smoked and oven-dried (smoked/dried) end products. Although the feed contained lower microbial numbers than the crickets, both were dominated by the same species-level operational taxonomic units, as determined by Illumina MiSeq sequencing. They corresponded, among others, to members of Porphyromonadaceae, Fusobacterium, Parabacteroides, and Erwinia The harvested crickets contained high microbial numbers, but none of the investigated food pathogens Salmonella spp., Listeria monocytogenes, Bacillus cereus, or coagulase-positive staphylococci. However, some possible mycotoxin-producing fungi were isolated from the crickets. A postharvest heat treatment, shortly boiling the crickets, reduced microbial numbers, but an endospore load of 2.4 log CFU/g remained. After processing, an increase in microbial counts was observed for the dried and smoked/dried crickets. Additionally, in the smoked/dried crickets, a high abundance of a Bacillus sp. was observed. Considering the possible occurrence of food-pathogenic species from this genus, it is advised to apply a heat treatment which is sufficient to eliminate spores. Nevertheless, the microbial numbers remained constant over a 6-month storage period, whether frozen (frozen end product) or at ambient temperature (oven-dried and smoked/dried end products).IMPORTANCE The need for sustainable protein sources has led to the emergence of a new food sector, producing and processing edible insects into foods. However, insight into the microbial quality of this new food and into the microbial dynamics during rearing, processing, and storage of edible insects is still limited. Samples monitored for their microbiota were obtained in this study from an industrial rearing and processing cycle. The results lead first to the identification of process steps which are critical for microbial food safety. Second, they can be used in the construction of a Hazard Analysis and Critical Control Points (HACCP) plan and of a Novel Food dossier, which is required in Europe for edible insects. Finally, they confirm the shelf-life period which was determined by the rearer.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología de Alimentos , Almacenamiento de Alimentos , Gryllidae/microbiología , Animales , Bacterias/genética , Recuento de Colonia Microbiana , Europa (Continente) , Manipulación de Alimentos , Secuenciación de Nucleótidos de Alto Rendimiento , Esporas Bacterianas , Clima Tropical
10.
FEMS Yeast Res ; 17(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27956491

RESUMEN

Brettanomyces (Dekkera) bruxellensis is an ascomycetous yeast of major importance in the food, beverage and biofuel industry. It has been isolated from various man-made ecological niches that are typically characterized by harsh environmental conditions such as wine, beer, soft drink, etc. Recent comparative genomics studies revealed an immense intraspecific diversity, but it is still unclear whether this genetic diversity also leads to systematic differences in fermentation performance and (off-)flavor production, and to what extent strains have evolved to match their ecological niche. Here, we present an evaluation of the fermentation properties of eight genetically diverse B. bruxellensis strains originating from beer, wine and soft drinks. We show that sugar consumption and aroma production during fermentation are determined by both the yeast strain and composition of the medium. Furthermore, our results indicate a strong niche adaptation of B. bruxellensis, most clearly for wine strains. For example, only strains originally isolated from wine were able to thrive well and produce the typical Brettanomyces-related phenolic off-flavors 4-ethylguaiacol and 4-ethylphenol when inoculated in red wine. Sulfite tolerance was found as a key factor explaining the observed differences in fermentation performance and off-flavor production. Sequence analysis of genes related to phenolic off-flavor production, however, revealed only marginal differences between the isolates tested, especially at the amino acid level. Altogether, our study provides novel insights in the Brettanomyces metabolism of flavor production, and is highly relevant for both the wine and beer industry.


Asunto(s)
Brettanomyces/metabolismo , Metabolismo de los Hidratos de Carbono , Fermentación , Microbiología de Alimentos , Compuestos Orgánicos Volátiles/metabolismo , Adaptación Biológica , Brettanomyces/clasificación , Brettanomyces/genética , Brettanomyces/aislamiento & purificación , Medios de Cultivo/química , Variación Genética
11.
Mycol Res ; 113(Pt 10): 1181-91, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19679185

RESUMEN

Fusarium oxysporum is a ubiquitous species complex of soilborne plant pathogens that comprises many different formae speciales, each characterized by a high degree of host specificity. In this study, the evolutionary relationships between different isolates of the F. oxysporum species complex have been examined, with a special emphasis on the formae speciales lycopersici and radicis-lycopersici, sharing tomato as host while causing different symptoms. Phylogenetic analyses of partial sequences of a housekeeping gene, the elongation factor-1alpha (EF-1alpha) gene, and a gene encoding a pathogenicity trait, the exopolygalacturonase (pgx4) gene, were conducted on a worldwide collection of F. oxysporum strains representing the most frequently observed vegetative compatibility groups of these formae speciales. Based on the reconstructed phylogenies, multiple evolutionary lineages were found for both formae speciales. However, different tree topologies and statistical parameters were obtained for the cladograms as several strains switched from one cluster to another depending on the locus that was used to infer the phylogeny. In addition, mating type analysis showed a mixed distribution of the MAT1-1 and MAT1-2 alleles in the F. oxysporum species complex, irrespective of the geographic origin of the tested isolates. This observation, as well as the topological conflicts that were detected between EF-1alpha and pgx4, are discussed in relation to the evolutionary history of the F. oxysporum species complex.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Genes del Tipo Sexual de los Hongos , Glicósido Hidrolasas/genética , Factor 1 de Elongación Peptídica/genética , Fusarium/clasificación , Fusarium/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Plantas/microbiología
12.
FEMS Microbiol Lett ; 266(2): 210-7, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17233732

RESUMEN

Sulfate modification on Rhizobium Nod factor signaling molecules is not a prerequisite for successful symbiosis with the common bean (Phaseolus vulgaris L.). However, many bean-nodulating rhizobia, including the broad host strain Sinorhizobium sp. BR816, produce sulfated Nod factors. Here, we show that the nodH gene, encoding a sulfotransferase, is responsible for the transfer of sulfate to the Nod factor backbone in Sinorhizobium sp. BR816, as was shown for other rhizobia. Interestingly, inactivation of nodH enables inoculated bean plants to fix significantly more nitrogen under different experimental setups. Our studies show that nodH in the wild-type strain is still expressed during the later stages of symbiosis. This is the first report on enhanced nitrogen fixation by blocking Nod factor sulfation.


Asunto(s)
Proteínas Bacterianas/genética , Phaseolus/microbiología , Sinorhizobium/genética , Sulfotransferasas/genética , Simbiosis/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Fijación del Nitrógeno/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/ultraestructura , Sinorhizobium/enzimología , Sinorhizobium/metabolismo , Sulfotransferasas/metabolismo
13.
Proc Natl Acad Sci U S A ; 103(40): 14965-70, 2006 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-16990436

RESUMEN

Swarming motility is suggested to be a social phenomenon that enables groups of bacteria to coordinately and rapidly move atop solid surfaces. This multicellular behavior, during which the apparently organized bacterial populations are embedded in an extracellular slime layer, has previously been linked with biofilm formation and virulence. Many population density-controlled activities involve the activation of complex signaling pathways using small diffusible molecules, also known as autoinducers. In Gram-negative bacteria, quorum sensing (QS) is achieved primarily by means of N-acylhomoserine lactones (AHLs). Here, we report on a dual function of AHL molecules in controlling swarming behavior of Rhizobium etli, the bacterial symbiotic partner of the common bean plant. The major swarming regulator of R. etli is the cinIR QS system, which is specifically activated in swarming cells by its cognate AHL and other long-chain AHLs. This signaling role of long-chain AHLs is required for high-level expression of the cin and rai QS systems. Besides this signaling function, the long-chain AHLs also have a direct role in surface movement of swarmer cells as these molecules possess significant surface activity and induce liquid flows, known as Marangoni flows, as a result of gradients in surface tension at biologically relevant concentrations. These results point to an as-yet-undisclosed direct role of long-chain AHL molecules as biosurfactants.


Asunto(s)
4-Butirolactona/análogos & derivados , Proteínas Bacterianas/metabolismo , Movimiento , Rhizobium etli/fisiología , Transducción de Señal , Tensoactivos/metabolismo , 4-Butirolactona/metabolismo , Genes Bacterianos/genética , Interacciones Hidrofóbicas e Hidrofílicas , Mutación/genética , Plancton/metabolismo , Rhizobium etli/citología , Resistencia al Corte , Tensión Superficial , Viscosidad
14.
J Bacteriol ; 187(15): 5460-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16030240

RESUMEN

The symbiotic interaction between Rhizobium etli and Phaseolus vulgaris, the common bean plant, ultimately results in the formation of nitrogen-fixing nodules. Many aspects of the intermediate and late stages of this interaction are still poorly understood. The R. etli relA gene was identified through a genome-wide screening for R. etli symbiotic mutants. RelA has a pivotal role in cellular physiology, as it catalyzes the synthesis of (p)ppGpp, which mediates the stringent response in bacteria. The synthesis of ppGpp was abolished in an R. etli relA mutant strain under conditions of amino acid starvation. Plants nodulated by an R. etli relA mutant had a strongly reduced nitrogen fixation activity (75% reduction). Also, at the microscopic level, bacteroid morphology was altered, with the size of relA mutant bacteroids being increased compared to that of wild-type bacteroids. The expression of the sigma(N)-dependent nitrogen fixation genes rpoN2 and iscN was considerably reduced in the relA mutant. In addition, the expression of the relA gene was negatively regulated by RpoN2, the symbiosis-specific sigma(N) copy of R. etli. Therefore, an autoregulatory loop controlling the expression of relA and rpoN2 seems operative in bacteroids. The production of long- and short-chain acyl-homoserine-lactones by the cinIR and raiIR systems was decreased in an R. etli relA mutant. Our results suggest that relA may play an important role in the regulation of gene expression in R. etli bacteroids and in the adaptation of bacteroid physiology.


Asunto(s)
Ligasas/fisiología , Phaseolus/fisiología , Rhizobium etli/fisiología , Adaptación Fisiológica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Guanosina Tetrafosfato/biosíntesis , Ligasas/genética , Datos de Secuencia Molecular , Fijación del Nitrógeno , Phaseolus/microbiología , ARN Polimerasa Sigma 54 , Rhizobium etli/genética , Factor sigma/genética , Factor sigma/metabolismo , Simbiosis
15.
Mol Microbiol ; 55(4): 1207-21, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15686565

RESUMEN

In general, oxidative stress, the consequence of an aerobic lifestyle, induces bacterial antioxidant defence enzymes. Here we report on a peroxiredoxin of Rhizobium etli, prxS, strongly expressed under microaerobic conditions and during the symbiotic interaction with Phaseolus vulgaris. The microaerobic induction of the prxS-rpoN2 operon is mediated by the alternative sigma factor RpoN and the enhancer-binding protein NifA. The RpoN-dependent promoter is also active under low-nitrogen conditions through the enhancer-binding protein NtrC. An additional symbiosis-specific weak promoter is located between prxS and rpoN2. Constitutive expression of prxS confers enhanced survival and growth to R. etli in the presence of H2O2. Single prxS mutants are not affected in their symbiotic abilities or defence response against oxidative stress under free-living conditions. In contrast, a prxS katG double mutant has a significantly reduced (>40%) nitrogen fixation capacity, suggesting a functional redundancy between PrxS and KatG, a bifunctional catalase-peroxidase. In vitro assays demonstrate the reduction of PrxS protein by DTT and thioredoxin. PrxS displays substrate specificity towards H2O2 (Km = 62 microM) over alkyl hydroperoxides (Km > 1 mM). Peroxidase activity is abolished in both the peroxidatic (C56) and resolving (C156) cysteine PrxS mutants, while the conserved C81 residue is required for proper folding of the protein. Resolving of the R. etli PrxS peroxidatic cysteine is probably an intramolecular process and intra- and intersubunit associations were observed. Taken together, our data support, for the first time, a role for an atypical 2-Cys peroxiredoxin against oxidative stress in R. etli bacteroids.


Asunto(s)
Proteínas Bacterianas/genética , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/fisiología , Peroxidasas/genética , Rhizobium etli/fisiología , Aerobiosis , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica , Cinética , Datos de Secuencia Molecular , Estrés Oxidativo/efectos de los fármacos , Rhizobium etli/efectos de los fármacos , Alineación de Secuencia , Homología de Secuencia de Aminoácido
16.
Appl Environ Microbiol ; 69(4): 2006-14, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12676676

RESUMEN

Sinorhizobium sp. strain BR816 possesses two nodPQ copies, providing activated sulfate (3'-phosphoadenosine-5'-phosphosulfate [PAPS]) needed for the biosynthesis of sulfated Nod factors. It was previously shown that the Nod factors synthesized by a nodPQ double mutant are not structurally different from those of the wild-type strain. In this study, we describe the characterization of a third sulfate activation locus. Two open reading frames were fully characterized and displayed the highest similarity with the Sinorhizobium meliloti housekeeping ATP sulfurylase subunits, encoded by the cysDN genes. The growth characteristics as well as the levels of Nod factor sulfation of a cysD mutant (FAJ1600) and a nodP1 nodQ2 cysD triple mutant (FAJ1604) were determined. FAJ1600 shows a prolonged lag phase only with inorganic sulfate as the sole sulfur source, compared to the wild-type parent. On the other hand, FAJ1604 requires cysteine for growth and produces sulfate-free Nod factors. Apigenin-induced nod gene expression for Nod factor synthesis does not influence the growth characteristics of any of the strains studied in the presence of different sulfur sources. In this way, it could be demonstrated that the "household" CysDN sulfate activation complex of Sinorhizobium sp. strain BR816 can additionally ensure Nod factor sulfation, whereas the symbiotic PAPS pool, generated by the nodPQ sulfate activation loci, can be engaged for sulfation of amino acids. Finally, our results show that rhizobial growth defects are likely the reason for a decreased nitrogen fixation capacity of bean plants inoculated with cysD mutant strains, which can be restored by adding methionine to the plant nutrient solution.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfoadenosina Fosfosulfato/metabolismo , Sinorhizobium/enzimología , Sulfato Adenililtransferasa/metabolismo , Sulfatos/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Familia de Multigenes , Mutación , Fijación del Nitrógeno , Phaseolus/microbiología , Filogenia , Análisis de Secuencia de ADN , Sinorhizobium/genética , Sinorhizobium/crecimiento & desarrollo , Sulfato Adenililtransferasa/genética , Simbiosis
17.
J Biol Chem ; 277(1): 462-8, 2002 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-11677232

RESUMEN

Rhizobium etli CNPAF512 produces an autoinducer that inhibits growth of Rhizobium leguminosarum bv. viciae 248 and activates the Agrobacterium tumefaciens tra reporter system. Production of this compound in R. etli is dependent on two genes, named cinR and cinI, postulated to code for a transcriptional regulator and an autoinducer synthase, respectively. NMR analysis of the purified molecule indicates that the R. etli autoinducer produced by CinI is a saturated long chain 3-hydroxy-acyl-homoserine lactone, abbreviated as 3OH-(slc)-HSL. Using cin-gusA fusions, expression of cinI and cinR was shown to be growth phase-dependent. Deletion analysis of the cinI promoter region indicates that a regulatory element negatively controls cinI expression. Mutational analysis revealed that expression of the cinI gene is positively regulated by the CinR/3OH-(slc)-HSL complex. Besides 3OH-(slc)-HSL, R. etli produces at least six other autoinducer molecules, for which the structures have not yet been revealed, and of which the synthesis requires the previously identified raiI and raiR genes. At least three different autoinducers, including a compound co-migrating with 3OH-(slc)-HSL, are produced in R. etli bacteroids isolated from bean nodules. This is further substantiated by the observation that cinI and cinR are both expressed under symbiotic conditions. Acetylene reduction activity of nodules induced by the cin mutants was reduced with 60-70% compared with wild-type nodules, indicating that the R. etli 3OH-(slc)-HSL is involved in the symbiotic process. This was further confirmed by transmission electron microscopy of nodules induced by the wild type and the cinI mutant. Symbiosomes carrying cinI mutant bacteroids did not fully differentiate compared with wild-type symbiosomes. Finally, it was observed that the cinR gene and raiR control growth of R. etli.


Asunto(s)
4-Butirolactona/análogos & derivados , Genes Bacterianos , Fijación del Nitrógeno , Rhizobium/genética , Simbiosis , 4-Butirolactona/genética , Secuencia de Bases , Mapeo Cromosómico , ADN Bacteriano/química , Regulación de la Expresión Génica , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Rhizobium/crecimiento & desarrollo , Rhizobium/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...